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Symmetrical embeddings are given for multiply intergrown sets of some

commonly occurring nets such as dia (diamond), qtz (quartz), pcu (net of

primitive cubic lattice) and srs (labyrinth net of the G minimal surface). Data are

also given for all known pairs of nets which have edge-transitive self-dual tilings.

Examples are given for symmetrical polycatenation of the 2-periodic nets sql

(square lattice) and hcb (honeycomb). The idea that the rings that are the faces

of natural tilings form a complete basis set (essential rings) is explored and

patterns of catenation of such rings described.

1. Introduction

An important and fascinating aspect of crystal chemistry is the

fact that in many instances the underlying nets of crystal

structures are entangled in some way. In what is perhaps the

simplest kind, two or more identical copies of a net are

intergrown so that rings of one net are catenated with those of

other copies (e.g. Batten & Robson, 1998; Carlucci et al., 2003,

2014; Blatov et al., 2004). Such structures are the topic of this

paper. From the mathematical point of view, the subject is

challenging. Conventional graph theory knows nothing of

knots and entanglements although spatial graph theory [which

deals with embedded graphs and such properties as knotted-

ness (Hyde & Delgado-Friedrichs (2011)] is a subject of active

research with applications to biological structures (e.g. Forgan

et al., 2011). The simplest kind of entanglement occurs in

catenanes in which molecules, otherwise unconnected, are

joined as links in a chain (catenated). The study of such

structures remains a topic of considerable chemical interest

(e.g. Niu & Gibson, 2009; Evans & Beer, 2014). The first

molecular catenanes were produced in small yield over 50

years ago (Wasserman, 1960). It was not generally realized by

chemists that in fact one of the first crystal structures ever

determined, that of cuprite (Cu2O; Bragg & Bragg, 1915),

consists of two interpenetrating networks in which O atoms

joined by –Cu– links form two diamond nets in which each

ring is catenated to six others (Fig. 1). The structure of cuprite

was clearly described and illustrated as interpenetrating nets

in the first Strukturbericht (Ewald & Hermann, 1931).1 In the

same volume one can find a description of the MgCu2 struc-

ture as interpenetrating nets of two different kinds.

The aim of this paper is to provide coordinates for high-

symmetry embeddings of non-intersecting intergrown nets

and to examine the patterns of catenation of rings. It is not a

review of crystal structures, which are only incidentally cited.

The subject is of practical importance for porous materials and

conscious efforts may be made either to encourage or to deter

such intergrowth in practical materials (Reineke et al., 2000).

Knowledge of possible symmetries can also be of assistance in

structure elucidation (Uribe-Romo et al., 2009). Nets based on

interpenetrating nets joined by extra links have some inter-

esting embeddings in which those links have zero length

(Delgado-Friedrichs et al., 2013).

Figure 1
Part of the Cu2O structure (O red, Cu blue) showing a Cu6O6 ring
catenated with six others.

1 ‘Der C3-Typ hat die interessante Eigenschaft, dass allein kürzeren
Verbindungen d schon eine dreidimensional unendliche Atommenge
zusammenfassen, die aber trotzdem noch nicht alle Atome des Kristalls
enthält. Die Atommengen, die allein durch die Verbindungen d zusammen-
gefasst werden, bilden zwei Gitter des C9-Typs, die einander durchdringen,
ohne ein Atom miteinander gemeinsam zu haben.’ (The C3-type [cuprite] has
the interesting property that the shortest connections d alone span a three-
dimensional infinite set of atoms, which nonetheless does not contain all atoms
in the crystal. Those atom sets which are spanned by the connections d alone
constitute two lattices of type C9 which interpenetrate each other without
having any atom in common.)

http://crossmark.crossref.org/dialog/?doi=&domain=pdf&date_stamp=2015-01-01


A pair of interpenetrating nets are separated by a periodic

surface and some of these, notably the gyroid (or G) surface,

are of considerable interest in materials science (Hyde et al.,

2008). Recently, attention has also been directed at the

multi-continuous surfaces separating sets of three or more

interpenetrating nets (Schröder-Turk et al., 2013), so knowl-

edge of possibilities for such structures is also relevant in this

context.

The nets we are concerned with are stable, i.e. do not have

collisions (overlap) between vertices in barycentric coordi-

nates. For such nets the graph automorphism group is

isomorphic to a crystallographic space group (Delgado-

Friedrichs, 2005; Moreira de Oliveira & Eon, 2014), so we seek

embeddings in that symmetry. For high-symmetry nets like

that of diamond only two copies of full symmetry can be

obtained. For multiple copies the most symmetrical embed-

ding is chosen. In an embedding the vertices and edges of the

abstract net are referred to as nodes and links, respectively. A

requirement is that nodes do not overlap and that straight

links do not overlap or intersect. Nets are identified by a three-

letter RCSR (Reticular Chemistry Structure Resource)

symbol such as xyz (O’Keeffe et al., 2008). For a catenated pair

of nets an extension is added such as xyz-c. xyz-cn indicates

there are n identical copies of the net intergrown. For space

groups with two origin choices in International Tables for

Crystallography, the second choice (origin at an inversion

center) is always used. Data for structures are given in Systre-

readable files in the supporting information.2 Systre (Delgado-

Friedrichs & O’Keeffe, 2005) determines the degree of inter-

penetration.3

Mention should be made of complementary work by

Koch et al. (2006), in which interpenetrating sphere packings

were enumerated and described. In sphere-packing nets the

shortest distance between nodes corresponds to links – a

situation that occurs for only one of the structures (srs-c)

considered here.

A classification of embeddings following Blatov et al. (2004)

is: class I, components related by translation; class II,

components related by other symmetry operations; class III,

components related by a combination of translations and

other symmetry operations. This classification is usually

applied to embeddings actually found in crystal structures,

which may be different from the maximum-symmetry

embeddings reported herein. Embeddings of interpenetrating

nets may be further characterized according to whether they

preserve the full symmetry of the net. Thus in embeddings of

the diamond net discussed below, there is an embedding of

two interpenetrating diamond nets that preserves the full

cubic symmetry, but embeddings of intergrowths of three or

more have at most tetragonal symmetry for the individual net.

The ultimate goal of the net taxonomist is to classify

interpenetrations so that any two can be said to be the same or

different. In this regard one might consider two inter-

penetrations the same if they are ambient isotopic. Two

embeddings are ambient isotopic if one can be deformed into

the other without links passing through each other. Structures

with the same topology but not ambient isotopic have been

called isotopes (Castle et al., 2011).

Distinct isotopic interpenetrations can be distinguished by

finding a Hopf ring net (HRN) (Alexandrov et al., 2012); we

give an example below. Unfortunately, as the authors note,

structures with the same HRN are not necessarily ambient

isotopic.

2. Rings, tilings and essential rings

The nets most prone to interpenetration are those with self-

dual natural tilings.4 In this case the nodes of a second net fit in

the interstices (tiles) of the first and vice versa. It is not

surprising that the three regular nets with this property (srs,

dia and pcu) are those most commonly occurring in crystal

structures with disjoint components (Blatov et al., 2004;

Alexandrov et al., 2011) and our attention is particularly

focused on those nets. For such structures, each n-ring of one

net will be catenated with n-rings of the second net. n = 10, 6

and 4 for srs, dia and pcu, respectively.

A net contains an infinite number of cycles (a closed path

along edges); only a small set of those, a finite number per

vertex, are of relevance to describing catenation – but just

what are they? First, we note that there is only a finite number

of rings and strong rings per vertex. A ring is defined as a cycle

that is not the sum of two smaller cycles and a strong ring is

defined as a cycle that is not the sum of any number of

smaller cycles (Goetzke & Klein, 1991; Delgado-Friedrichs &

O’Keeffe, 2005).5 The faces of convex polyhedra are rings, but

not necessarily strong rings; the 4-ring base of a square

pyramid is a ring but not a strong ring (it is the sum of the four

3-rings of the other faces). A ring that is not strong is called

weak (Blatov et al., 2007) and we use that term here.

If a net admits a natural tiling (Blatov et al., 2007), the faces

are strong rings in at least the local sense that, by definition,

there is not one tile face that is larger than the rest. But not all

strong rings are faces of tiles in a given tiling – only a subset,

which we have called the essential rings of the structure

(Delgado-Friedrichs et al., 2003). We conjecture that the rings

so selected form a complete basis set in the sense that all other

cycles can be expressed as a sum of these. We note, however,

that not all nets admit a tiling; for these, a basis set of essential

rings can still be identified. On the other hand, if a net does

admit a tiling the essential rings are not catenated (‘self-

entangled’), so that many nets such as coe (net of coesite)

which have been described as self-catenated (O’Keeffe, 1991)

but which admit a natural tiling should perhaps not be so
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2 Supporting information for this paper is available from the IUCr electronic
archives (Reference: EO5041).
3 Systre is freely available at http://www.gavrog.org.

4 A natural tiling has the same symmetry as the intrinsic symmetry of the net
(Delgado-Friedrichs et al., 2003). Except as noted, this is a unique tiling for the
nets considered in this paper.
5 The sum of two rings consists of those edges that occur once; the sum of a set
of rings consists of those edges that occur an odd number of times. A face of a
polyhedron (or generalized polyhedron such as a three-dimensional tile) is the
sum of all the other faces.



described. For the qtz (quartz) net, discussed below, the set of

essential rings is smaller than the set of strong rings.

The essential rings are similar in some ways to the smallest

set of smallest rings (SSSR) used by molecular chemists or,

more generally, the minimum cycle basis (MCB) used in other

areas of applied graph theory (e.g. Lee et al., 2009, and

references therein), but there are differences. A molecule has

a finite number of cycles and the SSSR is a minimal basis set

such that all other cycles are a sum of some, or all, of the basis

cycles. Thus the molecule cubane whose graph (omitting H

atoms) is that of a cube is considered to have just five rings

(the sixth face of the cube is the sum of the other five) and the

(partial) IUPAC name is pentacyclooctane. On the other hand,

in the net of the primitive cubic lattice which is carried by a

tiling of cubes, there are three 4-rings per vertex and we do not

take into account the fact that each ring is the sum of five

others.

The set of essential rings, as defined by a natural tiling, is not

always minimal. Thus consider the natural tile of the net lcy

(discussed further below) shown in Fig. 2. If the skeleton of the

tile were the graph of a molecule, the molecule would be

considered tricyclic (one 3-ring and two 5-rings). However, we

prefer to consider two families of rings – one 3-ring and three

5-rings per vertex. If we wanted a truly minimal basis we could

exclude the 3-rings as sums of 5-rings.

3. Families of intergrown 3-periodic nets

3.1. The dia (diamond) and ths nets

The diamond net is cubic, with symmetry Fd3m. Two

interpenetrating diamond nets displaced by a/2 (original cell)

have symmetry Pn3m with each net having the full symmetry.

For more interpenetrating nets, the maximum symmetry is

tetragonal with individual nets of symmetry I41/amd (site

symmetry at a node 4m2). The symmetry of the most

symmetrical embedding, with nets related by translation c,

depends on the number of components,

N (Uribe-Romo et al., 2009). For N odd,

the symmetry is I41/amd. For N twice an

even number, the symmetry is P4/nbm,

and for N twice an odd number, it is

P42/nnm. Explicit coordinates for the

most symmetrical configuration and

regular tetrahedral coordination are

given in Table 1. All the links are

related by symmetry, so it is enough to

specify one. Each ring is catenated with

6(N � 1) others. Blatov et al. (2004) give examples of crystal

structures with these class-I interpenetrations for N = 2–10.

It is worth noting that one can have a cubic structure of

threefold interpenetrating diamond nets of class II, if the

coordination figure at the vertices is allowed to deviate from a

regular tetrahedral shape. This structure, symbolized in RCSR

as dia-c3, has symmetry I43d with nodes in 12a 0, 1/4, 3/8 and

links 0, 1/4, 3/8 to 0, 1/4, 1/8. The bond angles are 127� (2�)

and 102� (4�). The I41/amd net of class I with N = 3 we label

dia-c3*. These two structures are clearly not ambient isotopic

as in dia-c3 each ring is catenated with 14 other rings, but in
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Figure 2
A natural tile of the lcy net and its 1-skeleton (right).

Table 1
Parameters for maximum-symmetry embeddings of dia (diamond) nets.

The edges are of unit length, and for the tetragonal structures the coordination figure is a regular
tetrahedron. In the first column, N is the number of component nets and n is any integer.

N Space group a c a/c Node Link

1 Fd3m 4/31/2 a 1 1/8, 1/8, 1/8 to �1/8, �1/8, �1/8
2 Pn3m 2/31/2 a 1 1/4, 1/4, 1/4 to �1/4, �1/4, �1/4
2n+1 I41/amd (8/3)1/2 4/31/2N N/21/2 0, 3/4, 1/8 to 0, 5/4, 1/8 + (�1)(N+1)/2N/4
4n P4/nbm 2/31/2 4/31/2N N/2 3/4, 1/4, 0 to 1/4, 3/4, �(�1)N/4N/4
4n+2 P42/nnm 2/31/2 4/31/2N N/2 3/4, 1/4, 1/4 to 1/4, 3/4, 1/4 + (�1)(N+2)/4N/4

Figure 3
Pattern of catenation of one 6-ring (black) with the rings of other nets
(red and blue).



dia-c3* each ring is catenated with 12 other rings as shown in

Fig. 3. It is worth noting that the three identical nets (say A, B

and C) in dia-c3 are related by a threefold rotation axis. One

ring of A is catenated to six rings of B and eight rings of C.

There are two 6-rings per vertex and an equal number of A

rings are catenated to eight rings of B and six rings of C. Note

that there is just one kind of ring in the structure, as all rings

are related to others by symmetry operations. A nice example

of a crystal structure based on full-symmetry dia-c3 was

reported by Blake et al. (1997).

The ths net is derived from dia by splitting 4-c (4-coordi-

nated) vertices into two 3-c (3-coordinated) ones in a tetra-

gonal fashion and ths nets are also commonly found

intergrown (Blatov et al., 2004). The symmetry is now I41/amd.

Nodes are in 8e 0, 3/4, z. There are two kinds of links and three

degrees of freedom, so, as commonly done in RCSR, an

embedding is found by minimizing the density subject to the

constraint of link lengths equal to 1.0. One finds then that a =

2(21/2)/3, c = 8/3 and z = 1/32. Intergrowths of multiple copies

(N) of this embedding are now to be found as for dia. The

symmetry for N odd is I41/amd, for N twice an odd number, it

is P42/nnm, and for N twice an even number, it is P4/nbm.

Systre files for up to N = 4 are included in the supporting

information. Actually one cannot proceed further with the

series without overlap of links along c. Overlapping and

multiply intergrown ths nets observed in practice have less

symmetric structures.

3.2. The srs net

The chiral srs net is of prime impor-

tance in inorganic and materials chem-

istry (Hyde et al., 2008). It has a self-

dual natural tiling and the net of the

dual is of opposite hand. The periodic

surface separating the two is the gyroid,

or G, surface, also of prime importance

in the structure of materials. As the

faces of the tiles are decagons, in such a

dual pair each ring is catenated with ten

rings of the other net (Fig. 4).

N interpenetrating nets of full

symmetry and one hand are possible for

N = 4, 8 and 27. Data for these are given in Table 2. Nice full-

symmetry examples of crystals based on N = 4 are described

by Kepert et al. (2000). For equal numbers of nets with both

hands and full symmetry the possibilities appear to be only N

= 2 or 54. N = 2 cases are ubiquitous (Hyde et al., 2008). A

spectacular example with N = 54 (this is the current record for

the number of interpenetrating nets) was reported by Wu et al.

(2011). In this structure each ring is catenated with 634 others

– a fact that should give molecular chemists pause! A fragment

of the structure is shown in Fig. 5. The number of catenating

rings was determined using TOPOS (Blatov et al., 2014).

The patterns of interpenetration are generally quite

complicated. In srs-c4 each ring is catenated with ten rings of

two other nets and 16 of the third. In srs-c8 the pattern is more

complicated: each ring is catenated with 92 others – 18 from

two nets, 16 from a third and ten from four others – all Hopf

links (see also supporting information).

As already noted by Wells (1977), in srs-c4, the positions of

the nodes are those of a face-centered cubic lattice.

3.3. The qtz and bto nets

The qtz net, symmetry P6222, does not have a self-dual

tiling, but nevertheless readily intergrows with full symmetry.

Copies of the net can be related by translations along the
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Figure 4
Ten rings catenating one 10-ring (red) in srs-c.

Table 2
Coordinates of nodes and links of interpenetrated srs nets with unit link length.

‘Number’ is the number of rings catenated to a given ring. The nets of srs-c* and srs-c3 do not have full
symmetry and have two kinds of node and ring.

N Class Space group a, c Node Link Number

srs-c II Ia3d 21/2 1/8, 1/8, 1/8 to �1/8, 3/8, 1/8 10
srs-c* I P4222 2, 21/2 1/4, 0, 0 to 3/4, 0, 0

to 0, 1/4, 1/2
ring 1 10
ring 2 12

srs-c3 II I4132 2(21/2) 1/8, 3/8, 7/8 to 1/8, 5/8, 5/8
to 3/8, 3/8, 1/8

ring 1 16
ring 2 20

srs-c4 I P4232 1/21/2 1/4, 1/4, 1/4 to �1/4, 3/4, 1/4 36
srs-c8 I I432 1/21/2 1/4, 1/4, 1/4 to �1/4, 3/4, 1/4 92
srs-c27 I I4132 2(21/2)/3 1/8, 1/8, 1/8 to 7/8, 5/8, 1/8 364
srs-c54 III Ia3d 2(21/2)/3 1/8, 1/8, 1/8 to 7/8, 5/8, 1/8 634

Figure 5
One unit cell of the srs-c54 structure. Fragments of links are joined to
nodes in other unit cells.



hexagonal a or c axis or both. To avoid edge intersections, the

number of copies related by translations along c must not be a

multiple of 3. To avoid similar intersections the number

related by translations along a is limited to 3. Thus with a

combination of translations one can have any number of

intergrown, non-intersecting qtz nets except a multiple of 9.

For a given hand of the single qtz, say that with symmetry

P6222, to preserve the hand with an even number of separate

nets, one must use the space group of opposite hand, i.e. P6422.

The full-symmetry net has one link and two degrees of

freedom (a and c), so in giving data for embeddings, the

minimum-density, subject to the constraint of unit link length,

conformation is used. For a single net this is a1 = ð8=3Þ1=2, c1 =

31=2, nodes at 1/2, 0, 0 etc. (see Table 3).

A very nice example of a crystal structure with both modes

of interpenetration (six nets) was found in CoAu2(CN)4, in

which tetrahedrally coordinated Co atoms are linked by –N–

C–Au–C–N– links (Abrahams et al., 1982).6 Fig. 6 illustrates

qtz-c6.

The pattern of linking is of some interest. First we note that

the qtz net has strong 6-rings and three topologically different

kinds of strong 8-rings – call the latter 8a, 8b and 8c. Examining

the unique proper tiling for qtz one finds that only the 8a rings

are used (Fig. 7), so only the 6- and 8a-rings (one of each per

node) are essential. The other 8-rings (two each per vertex)

can be expressed as a sum of those essential rings as shown in

Figs. 8 and 9. An interesting feature is that the 8-rings are

doubly linked (linking number = 2) as shown in Fig. 10

(Delgado-Friedrichs, O’Keeffe & Yaghi, 2005). Single links

between rings are referred to as Hopf links and double links

are referred to as Solomon links (Forgan et al., 2011). In knot

theory, knots are classified by the crossing number; for the

Hopf link this is 2, and for the Solomon link it is 4 (Fig. 9). In

all, there are four kinds of catenation:

6-ring with 6-ring 6 Hopf links

6-ring with 8-ring 6 Hopf links
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Figure 6
qtz-c6. Each net of the pairs of nets (dark and light blue, dark and light
green and red and yellow) are related by translations along the hexagonal
c direction. Pairs are related by translations along a.

Figure 8
Rings of the qtz net. The 8-ring in (c) is the sum of a 6-ring (a) and a tile 8-
ring (b). Links that are black in (c) are black once in (a) and (b). Edges
that are yellow in (c) are black twice in (a) and (b).

Figure 9
Rings of the qtz net. The 8-ring in (d) is the sum of a tile 8-ring (a) and
two 6-rings (b) and (c). Links that are black in (d) are black once in (a),
(b) and (c). Links that are yellow in (d) are black twice in (a), (b) and (c).

Figure 7
Left a tile of the qtz net, center its 1-skeleton, right one 8-ring.

Figure 10
Patterns of catenation in qtz-c.

6 It is interesting to note that the lengthy report of this structure, made 30
years ago by very distinguished crystallographers, makes no mention of
interpenetrating nets, nor even of nets at all. Contrast the later discussion of
the same structure by Hoskins et al. (1995).



8-ring with 8-ring 4 Hopf links

8-ring with 8-ring 2 Solomon links.

In total, there are 18 links per node compared to 12 per

node for a diamond catenated pair.

Just as ths is derived from dia, bto is derived from qtz by

splitting 4-c vertices into two 3-c vertices. In the minimum-

density P6222 structure a = 31=2, c = 9/2 and nodes are in 1/2, 0,

z with z = 1/9. Now the links are to 1/2, 0, �z and 1/2, 1/2,

1/3 � z. Coordinates for the multiply interpenetrated case are

readily derived from the data for qtz. Data for bto-c and

bto-c3 are given in the supporting information; note again that

beyond four nets related by translations along c, links parallel

to c overlap. But bto-c6 is still possible without overlapping

edges (data also in the supporting information).

3.4. The pcu net

The pcu net is familiar as the net of the primitive cubic

lattice with shortest distances taken as links. A pair of such

nets has maximum symmetry Im3m and links 0, 0, 0 to 1, 0, 0.

The bicontinuous surface separating the two nets is the P

minimal surface. For three interpenetrating nets, the best

arrangement we find is, with links of length 1.0:

pcu-c3, symmetry P31m, a = ð2=3Þ1=2, c = 1/31=2. Link 0, 0, 0

to 1, 0, 1, node symmetry 3m.

Here we consider also one pair of fourfold interpenetrating

nets (classes II and I, respectively) to illustrate the use of the

HRN of Alexandrov et al. (2012).

pcu-c4, symmetry P4332, a = 1. Link 1/8, 1/8, 1/8 to 9/8, 1/8,

1/8, node symmetry 32.

pcu-c4*, symmetry R3m, a = 21=2, c = 31=2/4. Link 0, 0, 0 to

2/3, 1/3, 1/3, node symmetry 3m.

As shown in Fig. 11, each ring in each

structure is catenated with 12 others, but

also it seems clear from the figure that

the two nets are not ambient isotopic. In

each case the HRN can be obtained by

linking the center of the ring to the

centers of the catenated rings. When

this is done, one finds two distinct 12-c

nets, which in fact have the same

intrinsic symmetry as the embeddings.

Systre input files for these two cases are included in the

supporting information.

4. Edge-transitive nets with self-dual tilings

Edge-transitive nets are the most important from the point of

view of crystal chemistry. We know all the face-transitive (and

by duality edge-transitive) proper 3-periodic tilings (Delgado-

Friedrichs & O’Keeffe, 2007) and in particular those with self-

dual tilings. We list data for the corresponding inter-

penetrating nets of a self-dual pair in maximum symmetry in

Table 4.

All the tilings in the table, except one, are proper, i.e. they

have an automorphism group that is the same as that of the

nets they carry (Blatov et al., 2007). The exception, which we

label fcu-z, is a lower-symmetry tiling of fcu (the net of the

face-centered cubic lattice). The proper tiling of fcu consists,

of course, of tetrahedra and octahedra. However, if two

tetrahedra and an octahedron are glued together, they form a

tile with 12 faces of rhombohedral shape. That tile can be used

to form a vertex- and edge-transitive, self-dual tiling with

symmetry Pa3 (Dress et al., 1993). So the question arises as to

whether two fcu nets can interpenetrate (something we

believe not to have been observed in practice). The answer is

yes, but only without intersecting links if the links are curved

(lowering the symmetry from Fm3m to Pa3) as shown in Fig.

12.

A natural tiling is a proper tiling with the additional

constraint that the tiles are as small as possible, without one
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Table 3
Coordinates for interpenetrating qtz nets with unit link length.

a1 = 2(21=2)/3 and c1 = 31=2 are unit-cell edges for qtz. n and m are integers and s (= �1) = �(�1)nmod3.

N Space group a c a/c Node Link

n 6¼ 3m P6222 a1 c1/n (8/3)1/2n 1/2, 0, 0 to 1/2, 1/2, �sn/3
n 6¼ 3m P6422 a1 c1/n (8/3)1/2n 0, 1/2, 0 to 1/2, 1/2, �sn/3
3n 6¼ 9m P6222 a1/31/2 3c1/n [81/2/9(31/2)]n 1/2, 0, 0 to 3/2, 1/2, �sn/3
3n 6¼ 9m P6422 a1/31/2 3c1/n [81/2/9(31/2)]n 0, 1/2, 0 to 3/2, 1/2, �sn/3

Figure 11
Pattern of catenation of one ring (black) with rings of the other three nets
in four interpenetrating pcu nets.

Figure 12
Left: a self-dual tiling by [312] rhombohedra with Pa3 symmetry. Right: a
fragment of interpenetrating fcu nets with curved non-intersecting links.
The red links outline one tile with curved edges and a blue node in the
center of that tile is linked to its 12 neighbors.



face being larger than the rest (Blatov et al., 2007). Two further

tilings in Table 4 are not natural. In the case of ctn, the natural

tiling uses two 8-rings (necessarily strong as they are the

shortest cycles), say 8a and 8b. The natural tiling is 4[8a
3] +

6[8a
2.8b]. Notice, we use the result below, that 8b rings are the

sum of two 8a rings, so the 8a rings form a complete basis set. In

the self-dual tiling, pairs of the latter are joined by sharing 8b

faces and now the tiling (self-dual) is 4[8a
3] + 3[8a

4].

The second non-natural self-dual tiling in the table is that

for lcy. Now the 3-ring of Fig. 2 is ignored and the tiles are now

hexahedra [56] as shown in Fig. 13. lcy is chiral and the dual

tiling has the same hand as the original. In the corresponding

intergrown pair (lcy-c) of same-chirality nets, the nodes of one

are in the centers of the 3-rings of the other (Fig. 14). In a

crystal structure, a more favorable

conformation, lcy-c*, is found with pairs

of nets of opposite hand and symmetry

Pa3 (Takashima et al., 2010). Now

the node is in the center of the [3.53] tile

and the 3-rings are uncatenated (Fig.

14). Data for these two modes of inter-

penetration are in the supporting

information.

The pattern of catenation in the

other pairs of interpenetrating nets is

straightforward – there is just one kind

of essential n-ring that is joined by Hopf

links to n others. The surfaces separ-

ating the pairs of nets are minimal

balance surfaces with identifying symbols taken from Fischer

& Koch (1989).

We remark that the five vertex- and edge-transitive tilings

listed here (for srs, dia, pcu, lcy and fcu-z) together with the

mutually dual pair bcu and nbo (Delgado-Friedrichs et al.,

2003) are a complete list of vertex-, edge-, face- and tile-

transitive tilings (transitivity 1111).

5. Polycatenated 2-periodic nets

Carlucci et al. (2003) prefer the term polycatenation to

describe d-periodic structures derived from linked structures

of lower periodicity.7 Here we briefly describe some uninodal

3-periodic structures formed from 2-periodic nets, specifically

the nets of the square lattice, sql, and the honeycomb lattice

complex, hcb. It is an interesting challenge to describe and

differentiate the catenations. Carlucci et al. (2014) give many

examples of occurrences, but not data for maximum-symmetry

embeddings; those authors note that 85% of 783 examples of

entanglements of 2-periodic structures involved one or the

other of these two nets.

Two symmetrical embeddings of hcb nets in two (hcb-c) and

three (hcb-c3) orientations (Fig. 15) are for regular hexagons

of edge 1:

hcb-c I4/mcm, a = 2/31=2, c = 31=2. Node at 1/6, 2/3, 0. Links to

�1/6, 1/3, 0 and 1/3, 5/6, 1/2.

hcb-c3 P6/mcc, a = 3, c = 31=2. Node at 1/2, 2/3, 0. Links to

1/2, 1/3, 0 and 1/2, 5/6, 1/2.

Two symmetrical tetragonal embeddings of sql nets with

two layers in the repeat unit are (Fig. 16):

sql-c P42/mmc, a = 1, c = 1. Node at 0, 1/2, 0. Links to 1, 1/2, 0

and 0, 1/2, 1.

sql-c* I4/mcm, a = 1, c = 21=2. Node at 0, 1/2, 0. Link to 1/2, 0,

1/2.

Two symmetrical hexagonal embeddings of sql nets with

three layers in the repeat unit are (Fig. 17):
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Table 4
Data for self-dual edge-transitive tilings.

CN is coordination number. ‘Surface’ refers to the symbol of the minimal balance surface symbols taken
from Fischer & Koch (1989).

Net CN
Space
group Link Tiles Surface

srs-c 3 Ia3d 1/8, 1/8, 1/8 – 1/8, 1/8, 1/8 [103] G
dia-c 4 Pn3m 1/4, 1/4, 1/4 – 3/4, 3/4, 3/4 [64] D
pcu-c 6 Im3m 0, 0, 0 – 1, 0, 0 [46] P
lcy-c 6 I4132 13/8, 3/8, 3/8 – 1/8, 5/8, 7/8 [56] Y
fcu-z-c 12 Ia3 0, 0, 0 – 1/2, 1/2, 0 [312]
ctn-c 3, 4 Ia3d 3/8, 0, 1/4 – 0.2083, 0.2083, 0.2083 4[83] + 3[84] S
pyr-c 3, 6 Ia3 1/2, 1/2, 0 – 0.1667, 0.1667, 0.1667 2[63] + [66] C(�Y)
ftw-c 4, 12 Im3m 0, 0, 0 – 1/1, 1/2, 0 3[44] + [412] C(P)
mgc-c 6, 12 Pn3m 1/2, 1/2, 0 – 3/4, 3/4, 3/4 2[46] + [412] C(D)

Figure 14
Patterns of interpenetration for lcy-c and lcy-c*.

Figure 13
The vertex-, edge-, face- and tile-transitive, self-dual tiling of lcy.

7 Multiply linked catenanes are more generally called polycatenanes (e.g. Niu
& Gibson, 2009) but also (and linguistically more correct) multicatenanes (e.g.
Wang et al., 2004). We reluctantly accept the more common polycatenation.



sql-c3 P6222 = 1, c = 1. Node at 1/2, 0, 0. Links to 3/2, 0, 0 and

1/2, 0, 1.

sql-3c* P6/mcc, a = 21=2, c = 21=2. Node at 1/2, 0, 0. Link to

1/2, 1/2, 1/2.

Two rhombohedral patterns with three families of sql nets

mutually perpendicular to each other (Fig. 18):

sql-c3**, R3, a = 1, � = 90�. Node at 0, 1/3, 2/3. Links to 1,

1/3, 2/3 and 0, 4/3, 2/3.

sql-c6, R3c, a = 1, � = 90�. Node at 0, 1/3, 2/3. Links to 1, 1/3,

2/3 and 0, 4/3, 2/3.

6. A note on self-entanglement

In a 3-periodic net, there are an infinite number of cycles and

one can always find a pair of cycles that forms a link or knot or

some other kind of entanglement. In that not very useful

sense, all nets are self-entangled. At the other extreme, if one

considers just the essential rings of the structure, nets such as

coe (the net of the coesite form of silica) commonly described

as self-catenated (e.g. O’Keeffe, 1991) are not self-entangled

as the catenated rings are not essential (coe admits a natural

tiling).

Another example cited by Delgado-Friedrichs, Foster et al.

(2005) is the net fnu. This 5-c net can be derived by linking a

pair of diamond nets (dia-c) by an extra edge. The resulting

structure has only 6-rings, but, as shown by Blatov et al. (2007),

6-rings that are not part of the original set of catenated 6-rings

of dia-c can be used to construct a tiling, and the essential rings

are not catenated.

Yet another example of a net constructed from dia-c is ddi.

This 8-c net has the catenated 6-rings of dia-c and indeed was

called a ‘self-penetrated’ and a ‘polyrotaxane’ (Yang et al.,

2009). However, the vertices are linked by four more edges
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Figure 15
Two symmetrical embeddings of polycatenated hcb nets.

Figure 18
Two rhombohedral patterns of polycatenated sql nets.

Figure 19
Aspects of the net ddi. (a) A dia net. (b) Two interpenetrating dia
nets linking the same vertices as in (a). (c) The nets in (a) and (b)
combined. (d) Part of a natural tiling of ddi. All tile faces are 4-rings. Red
tiles are [43].

Figure 17
Two hexagonal modes of polycatenation of three sets of sql (square lattice
nets).

Figure 16
Two tetragonal modes of polycatenation of two sets of sql (square lattice
nets).



that form another dia net as shown in Fig. 19. The result is that

now all the strong rings are 4-rings and two of them serve as

faces of the natural tiling. It can readily be verified that the

two 4-rings form a complete basis, so again the essential rings

are not catenated. From the tiling in the figure, it may be seen

that the [44] tiles include non-essential 4-rings that are the sum

of two edge-sharing faces. The 6-rings are the sum of at least

three 4-rings, so they are weak rings.

It does seem paradoxical in these last two examples that

adding more links to a catenated structure (dia-c) results in a

structure we no longer consider self-catenated. At the same

time, considering only the essential rings does also seem the

most logical criterion for self-entanglement.

If the layers of hcb-c3 are linked to additional nodes, each

linked to three hcb nets, a net (jcy) is obtained in which all the

strong rings (one each of 6-ring and 8-ring) in the structure are

catenated with other rings (Fig. 20). This serves as the

underlying net of the metal–organic framework ZJU-28 (Yu et

al., 2012). Now there are no uncatenated rings in the structure,

which is a single net (connected), so surely this one can be

considered self-catenated. Perhaps we should call such struc-

tures essentially self-catenated.

The levels of self-catenation may be summarized as follows:

Cycles, not rings, catenated – trivial.

Weak rings catenated – e.g. ddi.

Strong, non-essential, rings catenated – e.g. fnu.

Essential rings catenated – essentially self-catenated,

e.g. jcy.
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Figure 20
The jcy net. Blue, green and red parts are hcb-c3 (cf. Fig. 15). Magenta
nodes and gray links join the hcb nets into one connected net.
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